Wer wir sind

als führender Hersteller von Verbindungshalbleitermaterial in China. pam-xiamen entwickelt fortschrittliche Kristallwachstums- und Epitaxietechnologien, die von Germaniumwafern der ersten Generation, Galliumarsenid der zweiten Generation mit Substratwachstum und Epitaxie auf iii-v-Silizium-dotierten4
Weiterlesen
Nach mehr als 20 Jahren der Akkumulation und Entwicklung, hat unser Unternehmen einen offensichtlichen Vorteil in der Technologie Innovation und Talent-Pool. In Zukunft müssen wir das Tempo der tatsächlichen Maßnahmen beschleunigen, um unseren Kunden bessere Produkte und Dienstleistungen zu bieten
Doktor Chan -CEO von Xiamen Powerway Advanced Material Co., Ltd.

unsere Produkte

blauer Laser

Gan-Vorlagen

pam-xiamen's Template-Produkte bestehen aus kristallinen Schichten aus Galliumnitrid (gan), Aluminiumnitrid (aln), Aluminiumgalliumnitrid (algan) und Indiumgalliumnitrid (ingan), die auf Saphirsubstraten abgeschieden sind, Die Templatprodukte von Siliciumcarbid oder Siliciumpam-Xiamen ermöglichen 20-50% kürzere Epitaxiezykluszeiten und höherwertige4

Gan auf Silizium

freistehendes gan-Substrat

pam-xiamen hat die Herstellungstechnologie für freistehende (Galliumnitrid) gan Substratwafer, die für uhb-led und ld ist, etabliert. gewachsen durch Hydriddampfphasenepitaxie (Hvpe) -Technologie, hat unser Gansubstrat eine geringe Defektdichte.

Gaas Kristall

GaAs (Galliumarsenid) -Wafer

pwam entwickelt und fertigt Verbundhalbleitersubstrate - Galliumarsenidkristall und -wafer. Wir haben fortschrittliche Kristallzüchtungstechnologie, vertikales Gradientenfrosten (vgf) und Gaas-Wafer-Bearbeitungstechnologie verwendet, eine Produktionslinie vom Kristallwachstum, Schneiden, Schleifen bis zur Polierbearbeitung etabliert und gebaut ein 4

sic Kristall

sic Epitaxie

Für die Entwicklung von Siliziumkarbid-Bauelementen bieten wir kundenspezifische Dünnfilm-Silizium-Epitaxie auf 6h- oder 4h-Substraten an. sic epi wafer wird hauptsächlich für Schottky-Dioden, Metall-Oxid-Halbleiter-Feldeffekttransistoren, Sperrschicht-Feldeffekttransistoren, bipolare Sperrschichttransistoren, Thyristoren, GTO und Bipolar mit isoli4

sic Kristall

sic Substrat

pam-xiamen bietet Halbleiter Siliziumkarbid Wafer, 6h sic und 4h sic in verschiedenen Qualitäten für den Forscher und Industriehersteller. wir haben sic Kristallwachstumstechnologie und sic Kristallwafer-Verarbeitungstechnologie entwickelt, etablierte eine produktionslinie zu hersteller sic substrat, die in gan epitaxie gerät, power geräte, Hochtem4

gan expitaxy

Gan-basierter LED-Epitaxialwafer

pam-xiamens Gan (Galliumnitrid) -basierter LED-Epitaxialwafer ist für Anwendungen mit ultrahoher Helligkeit für blaue und grüne Leuchtdioden (LED) und Laserdioden (LD) geeignet.

Gan-Haemt-Epitaxie

Gan-HaMt-Epitaxialwafer

Galliumnitrid (Gan) Hemts (Transistoren mit hoher Elektronenbeweglichkeit) sind die nächste Generation von HF-Leistungstransistor-Technologie. Dank der Gan-Technologie bieten Pam-Xiamen nun Algan / Gan-Hemt-Epi-Wafer auf Saphir oder Silizium und Algan / Gan auf Saphir-Template .

sic Kristall

sic Wafer zurückgewinnen

pam-xiamen ist in der Lage, die folgenden sic reclaim wafer services anzubieten.

Warum Uns Wählen

  • kostenlose und professionelle Technologieunterstützung

    Sie können unseren kostenlosen Technologie - Service von der Anfrage bis zum Service auf unserer Basis erhalten 25+ Erfahrungen in der Halbleiterlinie.

  • guter Verkaufsservice

    unser Ziel ist es, alle Ihre Anforderungen zu erfüllen, egal wie klein Bestellungen sind und wie schwierig die Fragen sind Sie können sein, um für jeden Kunden ein nachhaltiges und profitables Wachstum durch qualifizierte Produkte und zufriedenstellenden Service zu gewährleisten.

  • 25+ Jahre Erfahrung

    mit mehr als 25 + Jahre Erfahrungen Im Bereich der Verbindungshalbleitermaterialien und Exportgeschäfte kann unser Team Ihnen versichern, dass wir Ihre Anforderungen verstehen und professionell mit Ihrem Projekt umgehen können.

  • zuverlässige Qualität

    Qualität ist unsere erste Priorität. Pam-Xiamen wurde iso9001: 2008 , besitzt und teilt vier moderne facories, die eine ziemlich große Auswahl von qualifizierten Produkten zur Verfügung stellen können, um verschiedene Bedürfnisse unserer Kunden zu erfüllen, und jede Bestellung muss durch unser stren4

"Wir haben die Powerway Epi Wafer für einige unserer Arbeiten verwendet. Wir sind sehr beeindruckt von der Qualität des Epi"
James S. Speck, Materialabteilung Universität von Kalifornien
2018-01-25
"liebe pam-xiamen-teams, danke für deinen berufsstand, das problem ist gelöst, wir sind so froh, dein partner zu sein"
Raman k. Chauhan, Seren Photonik
2018-01-25
"danke für die schnelle antwort meiner fragen und konkurrenzfähiger preis, es ist sehr nützlich für uns, wir werden bald wieder bestellen"
markus sieger, universität ulm
2018-01-25
"Die Siliziumkarbid-Wafer sind heute angekommen, und wir sind sehr zufrieden mit ihnen! Daumen hoch zu Ihrer Produktionsmannschaft!"
Dennis, Universität von Exeter
2018-01-25

Die berühmtesten Universitäten und Firmen der Welt vertrauen uns

neuesten Nachrichten

Density Functional Theory Calculations of Atomic Configurations and Bandgaps of C-, Ge-, and Sn-Doped Si Crystals for Solar Cells

2020-03-17

Poly-Si crystals are mainly used in solar cells because of their low cost. Here, the zones of sensitivity to wavelengths in sunlight should be expanded to increase the engineering efficiency of solar cells. Group IV compound semiconductors films, e.g., Si (Ge) films doped with C, Ge (C, Si), and/or Sn atoms with contents of several %, on a Si or Ge substrate have been identified as potential solutions to this technical problem. In this study, we calculated the formation energy of each atomic configuration of C, Ge, and Sn atoms in Si by using density functional theory. The "Hakoniwa" method proposed by Kamiyama et al. [Materials Science in Semiconductor Processing, 43, 209 (2016)] was applied to a 64-atom supercell of Si including up to three atoms of C, Ge, and/or Sn (up to 4.56%) in order to obtain the ratio of each atomic configuration and the average value of the Si bandgaps. Not only the conventional generalized gradient approximation (GGA) but also the screened-exchange local-den...

Weiterlesen

Electrical Conductivity of Direct Wafer-Bonded GaAs/GaAs Structures for Wafer-Bonded Tandem Solar Cells

2020-03-09

Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com

Weiterlesen

Optical Transmission, Photoluminescence, and Raman Scattering of Porous SiC Prepared from p-Type 6H SiC

2020-03-05

The optical transmission, temperature-dependence of the photoluminescence (PL), and Raman scattering of porous SiC prepared from p-type 6H-SiC are compared with those from bulk p-type 6H-SiC. While the transmission spectrum of bulk SiC at room temperature reveals a relatively sharp edge corresponding to its band gap at 3.03 eV, the transmission edge of porous SiC (PSC) is too wide to determine its band gap. It is believed that this wide edge might be due to surface states in PSC. At room temperature, the PL from PSC is 20 times stronger than that from bulk SiC. The PL PSC spectrum is essentially independent of temperature. The relative intensities of the Raman scattering peaks from PSC are largely independent of the polarization configuration, in contrast to those from bulk SiC, which suggests that the local order is fairly random. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com&...

Weiterlesen

Optical Transmission, Photoluminescence, and Raman Scattering of Porous SiC Prepared from p-Type 6H SiC

2020-03-05

The optical transmission, temperature-dependence of the photoluminescence (PL), and Raman scattering of porous SiC prepared from p-type 6H-SiC are compared with those from bulk p-type 6H-SiC. While the transmission spectrum of bulk SiC at room temperature reveals a relatively sharp edge corresponding to its band gap at 3.03 eV, the transmission edge of porous SiC (PSC) is too wide to determine its band gap. It is believed that this wide edge might be due to surface states in PSC. At room temperature, the PL from PSC is 20 times stronger than that from bulk SiC. The PL PSC spectrum is essentially independent of temperature. The relative intensities of the Raman scattering peaks from PSC are largely independent of the polarization configuration, in contrast to those from bulk SiC, which suggests that the local order is fairly random. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com&...

Weiterlesen

Upgrading of CdZnTe by annealing with pure Cd and Zn metals

2020-02-25

1−y alloy as the annealing source.

Weiterlesen

Fabrication of InP/SiO2/Si Substrate using Ion-Cutting Process and Selective Chemical Etching

2020-02-18

In this study, an InP layer was transferred onto a Si substrate coated with a thermal oxide, through a process combining ion-cutting process and selective chemical etching. Compared with conventional ion-cutting of bulk InP wafers, this layer transfer scheme not only takes advantage of ion- cutting by saving the remaining substrates for reuse, but also takes advantage of selective etching to improve the transferred surface conditions without using the chemical and mechanical polishing. An InP/InGaAs/InP heterostructure initially grown by MOCVD was implanted with H+ ions. The implanted heterostructure was bonded to a Si wafer coated with a thermal SiO2 layer. Upon subsequent annealing, the bonded structure exfoliated at the depth around the hydrogen projected range located in the InP substrate. Atomic force microscopy showed that after selective chemical etchings on the as-transferred structure, a final structure of InP/SiO2/Si was obtained with a relatively smooth surface. Source:IOPsc...

Weiterlesen

A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates

2020-02-12

We review our recent efforts on developing HgCdSe infrared materials on GaSb substrates via molecular beam epitaxy (MBE) for fabricating next generation infrared detectors with features of lower production cost and larger focal plane array format size. In order to achieve high-quality HgCdSe epilayers, ZnTe buffer layers are grown before growing HgCdSe, and the study of misfit strain in ZnTe buffer layers shows that the thickness of ZnTe buffer layer needs to be below 300 nm in order to minimize the generation of misfit dislocations. The cut-off wavelength/alloy composition of HgCdSe materials can be varied in a wide range by varying the ratio of Se/Cd beam equivalent pressure during the HgCdSe growth. Growth temperature presents significant impact on the material quality of HgCdSe, and lower growth temperature leads to higher material quality for HgCdSe. Typically, long-wave infrared HgCdSe (x=0.18, cut-off wavelength of  at 80 K) presents an electron mobility as high as&nbs...

Weiterlesen

The Electrochemical Society Wet Etching Technology for Semiconductor and Solar Silicon Manufacturing: Part 2 - Process, Equipment and Implementation

2020-01-20

Wet etching is an important step in the manufacturing of semiconductor and solar wafers and for the production of MEMS devices. While it has been replaced by the more precise dry etching technology in advanced semiconductor device fabrication, it still plays an important role in the manufacture of the silicon substrate itself. It is also used for providing stress relief and surface texturing of solar wafers in high volume. The technology of wet etching silicon for semiconductor and solar applications will be reviewed. Impact on this step for wafer properties and critical parameters (flatness, topology and surface roughness for semiconductor wafers, surface texture and reflectance for solar wafers) will be presented. The rationale for the use of a etching technology and etchant for specific applications in semiconductor and solar wafer manufacturing will be presented. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at&nbs...

Weiterlesen

Characterization of 4H-SiC Homoepitaxial Films on Porous 4H-SiC from Bis(trimethylsilyl)methane Precursor

2020-01-13

4H-SiC homoepitaxial films were grown on 8° off-axis porous 4H-SiC (0001) faces in the temperature range of  by chemical vapor deposition from bis(trimethylsilyl)methane (BTMSM) precursor. The activation energy for growth was 5.6 kcal/mol, indicating that the film growth is dominated by the diffusion-limited mechanism. Triangular stacking faults were incorporated in the SiC thin film grown at low temperature of 1280°C due to the formation of 3C-SiC polytype. Moreover, super-screw dislocations appeared seriously in the SiC film grown below 1320°C. Clean and featureless morphology was observed in the SiC film grown below 25 standard cubic centimeters per minute (sccm)  carrier gas flow rate of BTMSM at 1380°C while 3C-SiC polytype with double positioning boundaries grew at 30 sccm flow rate of BTMSM. The dislocation density of the epi layer was strongly influenced by the growth temperature and flow rate of BTMSM. Double axis crystal X-ray diffraction and optical micro...

Weiterlesen

Density Functional Theory Study of the Stress Impact on Formation Enthalpy of Intrinsic Point Defect around Dopant Atom in Ge Crystal

2020-01-07

During the last decade, the use of single crystal germanium (Ge) layers and structures in combination with silicon (Si) substrates has led to a revival of defect research on Ge. In Si crystals, dopants and stresses affect the intrinsic point defect (vacancy V and self-interstitial I) parameters and thus change the thermal equilibrium concentrations of V and I Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com

Weiterlesen

kontaktiere uns

wenn Sie ein Angebot oder mehr Informationen über unsere Produkte möchten, lassen Sie uns bitte eine Nachricht, wird Ihnen so schnell wie möglich antworten.